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STUDIES ON CHEMOVISCOSITY MODELIWG FOR THERMOSETTING RESINS 

BY 

J. M. Ba i l ,  T. H. Hou*, and S .  N. Tiwari3 

SUMMARY 

A new a n a l y t i c a l  model f o r  s imulat ing chemoviscosity o f  thermosett ing 

r e s i n s  has been formu ated. The model i s  developed by modify ing t h e  wel l -  

estab l ished W i  l l iams-Landel-Ferry (WLF) theo ry  i n  polymer rheology f o r  

thermop las t ic  mater ia ls .  

t r a n s i t i o n  temperature T g ( t )  and the  degree o f  cure a ( t )  o f  t he  r e s i n  system 

under cure, t h e  WLF theory can be modif ied t o  account f o r  t h e  f a c t o r  o f  

r e a c t i o n  time. 

constants Cl(t) and C2(T) were determined from t h e  isothermal cure data. 

Theoret ica l  p red ic t i ons  o f  t h e  model f o r  t h e  r e s i n  under dynamic heat ing 

cure cyc les  were shown t o  compare favorably  w i t h  the  experimental data. 

This work represents progress toward es tab l i sh ing  a chemoviscosity model 

which i s  capable of not o n l y  descr ib ing v i s c o s i t y  p r o f i l e s  accurate ly  under 

var ious cure cycles, but  also c o r r e l a t i n g  v i s c o s i t y  da ta  t o  t h e  changes of 

phys ica l  p roper t i es  associated w i t h  the s t r u c t u r a l  t rans format ion  o f  t h e  

thermoset t ing  r e s i n  systems dur ing cure. 

By in t roducing a r e l a t i o n s h i p  between the  g lass 

Temperature-dependent funct ions o f  t h e  modif ied WLF t heo ry  
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Chapter 1 

INTRODUCTION 

Perhaps the single most important property of a polymer w i t h  regard 

to  specifying i t s  processing characteristics i s  i t s  viscosity. Viscos- 

i t y  governs the resin flow characteristics. For thermopla s t i  c 

materials, the viscosity i s  influenced by local flow geometry a n d  can 

vary w i t h  processing temperature and shear rate. Vi scosi ty  control 

becomes more cri t ical  a n d  difficult i n  the processing of thermosetting 

resins, because o f  the onset of chemical reactions and the generation of 

heat d u r i n g  cure which causes the viscosity t o  vary w i t h  time. The term 

chemoviscosity refers to  the variation of viscosity due t o  the polymer 

chemical reaction. The study of chemoviscosity i s  generally called 

c hemor heol ogy [1]* . 
In a typical  autoclave operation for the fabrication of composite 

materials, the viscosity-time profile must allow f i r s t  for the b u b b l i n g  

o f f  of trapped $as, then fiber compaction w i t h  resin flow, and f i n a l l y ,  

laminate consolidation under applied pressure before the resin has 

gelled and ceases t o  flow. A typical cure cycle for  the MACNAMITE 

AS4/3501-6 graphite pregreg (an  amine-cured epoxy resin, Hercules 3501- 

6 ,  reinforced w i t h  unidirectional graphite fibers [ Z ] )  i s  shown i n  F i g .  

1.1. 

* The numbers i n  brackets indicate references. 
1 
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A t  the s t a r t  of a cure cycle, the polymerizat ion reaction begins 

a n d  the polymers chains lengthen. The increase i n  viscosity of the 

resin due t o  polymerization is, however, largely offset by the increase 

i n  temperature w h i c h  i s  introduced t h r o u g h  the cure cycle and  the heat 

o f  reaction. Consequently, a drop i n  resin v iscos i ty  of two or three 

orders o f  magnitude a t  the i n i t i a l  stage o f  cure is  n o t  uncommon. As 

the resin continues t o  polymerize, crosslinks are formed and the 

viscosity o f  the resin system starts t o  increase a t  a faster rate. 

Finally, the rate of increase of viscosity approaches infinity a t  

gelation. Therefore, any chemoviscosi t y  profile i s  closely related t o  

the reaction kinetics of the resin systems and  the cure cycle 

(temperature profile) d u r i n g  processing. A fundamental understanding of 

the chemoviscosi t y  kinetics of thermosetting resin has been necessary i n  

order t o  o b t a i n  a precise processing control . 
The objective o f  present research i s  to  establ i s h  a chemovi scosi t y  

model w h i c h  i s  capable of n o t  only describing viscosity rise profiles 

accurately under various cure cycles, b u t  a1 so correlating viscosity 

data t o  the changes o f  physical properties associated w i t h  the 

structural transformation of the thermosetting resin systems d u r i n g  

cure . 
The thermal analysis and  rheological analysis on net resin system 

were conducted by the differential scanning  calorimetry and rheometry, 

respectively, during the course of the s tudy .  By introducing a well- 

established viscosity-temperature relationship already existing i n  

polymer rheology based on the information of thermal analysis a n d  

rheological analysis, an analytical model for  chemoviscosi t y  profile of 

thermosetting resin during cure was formulated. The v i  scosi ty  



4 

calculated by the proposed model could be correlated w i t h  the physical 

properties t h r o u g h  the two tempera ture-dependent functions C1 ( T I  and 

C2(T) as well a s  the glass t ransi t ion temperature. In  the fol lowing 

chapters, the experimental measurements on the thermal and  rehological 

properties a re  f i r s t  introduced and the modeling approaches and results 

are then presented. 

I 

i 
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Chapter 2 

LITERATURE SURVEY 

Numerous researchers have devoted considerable efforts t o  establish 

an  analytical model for the chemoviscosity growth profile of thermo- 

setting resins under cur ing .  There are two different basic approaches 

i n  chemoviscosi t y  modeling o f  thermosetting resin. The most common 

approach to  the problem has been by empirically specifying the viscosity 

linearly a s  an exponential function o f  reaction [3,41, or w i t h  the a i d  

of DSC thermal ana lys i s ,  the degree o f  cure [5]. 

The empirical model proposed by Roller E31 t o  correlate isothermal 

viscosi ty  data for a curing B-staged epoxy resin can be expressed as 

A n  q = A n  qo + k t  (2 .1 )  

where 7 is the time dependent viscosity, qo i s  the zero-time viscosity, 

k i s  an apparent kinetic factor, and t is the time. Tak ing  the 

temperature dependence in to  account, 11; could be expressed as 

where i s  the pre-exponential constant, AE is  Arrhenius activation 

energy of viscous flow, and R, the universal gas constant. Similarly, 

one can also express k with an Arrhenius expression 

11 

k = k m exp(-AEk/RT) (2.3) 

3 



Here AEk i s  the Arrhenius a c t i v a t i o n  energy o f  chemical reac t i on .  

S u b s t i t u t i n g  Eqs. ( 2 . 2 )  and (2.3) i n t o  Eq. (2.11, we have 

k AE 
An q ( t I T  = An q + L  + t k exp(- -) 

= RT m RT (2.4) 

I n  the  dynamic heat ing case, cure cyc le  i s  a func t i on  o f  time, i.e., T = 

T ( t ) ,  and therefore,  Eq. (2 .4)  can be genera l ized t o  

(2.5) 

I n  comparing the ca lcu lated v i s c o s i t y  by Eq. (2.5) t o  the  

exper imental  values, R o l l e r  C31 noted t h a t  there  e x i s t s  a l a r g e  

discrepancy, espec ia l l y  i n  the higher heat ing r a t e  cases. I t  seemed 

t h a t  such empi r i ca l  s imu la t ion  o f  chemoviscosi t y  i s  inadequate i n  

desc r ib ing  accura te ly  the non- l inear i  t y  o f  the chemoviscosi ty - t ime 

p r o f i l e  assoc iated w i t h  the advancement o f  r e s i n  under dynamic heat ing  

cure cycle. The model i s  a l s o  found t o  be very much ba tch-spec i f i c  and 

cannot be r e l a t e d  d i r e c t l y  t o  the r e s i n  chemistry. 

I n  a s i m i l a r  manner, Carpenter [41 adopted the model given i n  Eq. 

(2.1) t o  s imulate chemoviscosity o f  Hercules 3501-6 n e t  r e s i n  system, 

which was cured under var ious condi t ions.  The k i n e t i c s  f a c t o r  k i n  Eq. 

(2.1) was expressed as a d i f f e r e n t  func t ion  o f  temperature than t h a t  o f  

Ro l l e r .  When comparing w i t h  the exper imental  values, however, s i m i l a r  

inadequancies as those discussed above on R o l l e r '  s modeling were a1 so 

noted. 

E f f o r t s  were a l s o  made t o  model the time-dependence v i s c o s i t y  by 

Lee e t  a l .  [5]. The degree o f  cure o f  the r e a c t i v e  r e s i n  system du r ing  

cure was in t roduced i n  chemoviscosity modeling by means o f  DSC. The 

model for  isothermal case has been proposed as fo l lows:  



I 

where 

AE i s  
II 

tl A = An q m + r  

7 

(2.6) 

he a c t i v a t i o n  energy f o r  v iscous f low and k i s  a constan- whicn 

i s  independent o f  temperature. The v i s c o s i t y  i n  the dynamic case was 

obtained from Eq. (2.6). The temperature was ca l cu la ted  from the  

heat ing  r a t e  a t  every 0.5 seconds and the values were determined by 

numerical i n t e g r a t i o n  o f  reac t ion  k i n e t i c s  which was determined as a 

p r i o r i t y  i n  the isothermal case. When compared w i t h  experimental data, 

i t  i s  seen t h a t  Eq. (2.6) i s  capable o f  descr ib ing  the isothermal  

v i s c o s i t y  we l l ;  however, i t  i s  inadequate t o  model the n o n - l i n e a r i t y  o f  

chemoviscosity under the dynamic cure case. This  approach, however, has 

suggested a way o f  r e l a t i n g  chemoviscosity t o  a phys ica l  property,  i.e. 

the degree o f  cure, which represents the var ious s t r u c t u r e  s ta tus  o f  a 

r e a c t i v e  r e s i n  system under cure. 

. The second approach i s  based on a m o d i f i c a t i o n  t o  the we l l -  

es tab l i shed viscosi ty- tempera ture r e l a t i o n s h i p  e x i s t i n g  i n  polymer 

rheology f o r  thermoplast ic  mater ia ls .  The parameters i n  such an 

equat ion can be expressed i n  terms of po lymer iza t ion  k i n e t i c s ,  and the 

chemoviscosity p r o f i l e s  as  a func t ion  o f  r e a c t i o n  t ime can then be 

mode 1 ed f o r  thermose tti ng r e s f  n sy s tern. 

The v iscos i ty- temperature re la t i onsh ip ,  which i s  based on the 

Wil l iams-Landel-Ferry (WLF) theory [6], i s  g iven by 
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represents the where C1 and C2 are two material constants, a n d  

viscosity a t  the glass transition temperature Tg of the given 

thermoplastic material. The normal use of the NLF equation f o r  

thermoplastic materials requires t h a t  Tg be constant while the 

temperature T i s  varied w i t h i n  100 K above Tg for the specific polymer 

under study, and Tg can be replaced by any reference temperature Ts 

w i t h i n  the experimental range. I t  has been extensively documented i n  

the 1 i tera ture t h a t  tempera ture-dependent viscosity of thermoplastic 

materials can be accurately described by the WLF equation w i t h i n  100 K 

above i t s  glass transition temperature Tg. However, during the curing 

of thermosetting resins, the monomers are i n i t i a l l y  polymerized and  

crosslinks are formed later. This i s  a system where T g ( t )  i s  chang ing  

a n d  the curing temperature T i s  held constant ( i n  an  isothermal cure 

case, fo r  example). The glass t r ans i t i on  temperature Tg rises 

continuously and may eventually approach the curing temperature. Over 

the entire curing cycle, the material structure actually undergoes 

cont inuous  phase transformation from a low molecular weight liquid t o  a 

h i g h  molecular weight polymeric melt, and eventually transforms t o  a 

crosslinked network. For a thermosetting resin system under cure, i t  i s  

% 

reasonable to  assume t h a t  T g ( t )  of the material i s  always within 100 K 

lower t h a n  the cure temperature. The WLF equation should then be 

applicable to  every instant s t a t e  of the resin system under  c u r i n g .  The 

central theme i n  modifying the WLF theory t o  describe the chemoviscosity 

of thermosetting resin i s  to  take into account the reaction time factor. 

The applicability of the modified WLF theory i n  chemoviscosity 

modeling for thermosetting resin has been studied by Tajima and Crozier 

[1,71, Apicella e t  al .  [8] and  Hou C91 among others. 



9 

Tajima and Crozier C1,71 modeled the chemoviscosity as a f u n c t i o n  

o f  po lymer iza t ion  k i n e t i c s  f o r  an amine (DDSI-cured epoxy r e s i n  by a 

mod i f ied  WLF equation. The advancement o f  r e a c t i o n  was determined by 

the  concent ra t ion  of the hardener DDS. The parameters Ts and q(Ts) i n  

Eq. (2.7) were al lowed t o  vary w i th  times, The two mate r ia l  parameters 

C1 and C2 were assumed t o  be independent o f  r e a c t i o n  time. A f a i r l y  

good agreement between ca lcu la ted  and exper imental  data was observed. 

I n  h i s  i nves t i ga t i on ,  Hou [91 proposed an a n a l y t i c a l  model which 

was a l s o  based on mod i f i ca t ion  o f  the WLF theory. Major assumptions 

i nvo l ved  were t h a t  the r a t e  of reac t ion  i s  d i f f us ion  c o n t r o l l e d  and was 

l i n e a r l y  i nve rse l y  p ropor t i ona l  t o  the v i s c o s i t y  of the medium over the 

e n t i r e  cure cycle. The modif ied WLF equat ion became a f i r s t  order  

o rd inary  non l inear  d i f f e r e n t i a l  equation. Numerical so lu t i ons  were a l s o  

shown t o  compare favorably w i t h  the exper imental  r e s u l t s  f o r  several  

thermoset t ing systems under isothermal and dynamic heat ing  cure 

cond i t ions .  I t  was demonstrated 191 t h a t  by such mod i f ied  WLF equation, 

an a n a l y t i c a l  model w i t h  h igh degree of accuracy f o r  the chemoviscosi ty 

s imu la t i on  f o r  any thermosett ing r e s i n  system under var ious cure cyc les 

can be establ ished. The physical  s ign i f i cances  o f  the ma te r ia l  

parameters se lected f o r  the model were, however, d i f f i c u l t  t o  e x t r a c t  

f o r  the p a r t i c u l a r  r e s i n  system under i nves t i ga t i on .  

A new approach i n  chemoviscosity modeling used i n  the present  study 

w i l l  be formulated and discussed l a t e r  i n  Chap. 5. 



Chapter 3 

EXPERIMENTAL METHODS 

3.1 Thermal Analys is  

3.1.1 Sample Preparat ion 

Sample ranging from 3 to  7 mg i n  weight  was encapsulated i n  a 

standard aluminum sample pan. To prevent  the sample holder be ing 

contaminated by the s p l i t t e d  sample, a small  ho le was made on the center 

o f  the  l i d .  Tweezers were used throughout a l l  the t ime f o r  sample 

handling, load ing  and s tor ing.  The weight  o f  the sample was measured 

be fore  and a f t e r  the tes t .  The weight  losses du r ing  the t e s t s  were 

found t o  be n e g l i g i b l e .  The prepared samples were s to red  i n  a 

r e f r i g e r a t o r  and removed j u s t  pr ior  t o  the measurement. 

3.1.2 Apparatus 

Perkin-Elmer d i f f e r e n t i a  1 scannf ng ca 1 orime t e r  (Model DSC-2 1 

coupled t o  a h igh  q u a l i t y  po ten t i one t r i c  recorder  (Model 3314, a product  

o f  SOLTEC CORP.) was used i n  thermal ana lys is .  

The DSC i s  a sophis t icated ins t rument  f o r  the  measurement and 

c h a r a c t e r i z a t i o n  o f  the thermal p roper t ies  o f  mater ia ls .  I t  cons is t s  o f  

an analyzer  desk, d r a f t  sh ie ld ,  sample holder  cover k i t ,  concealed 

c o n t r o l  panel cover, vacuum pickup device, etc.  

10 
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When a transition such as melting, boiling and dehydration o f  

crystallization occurs i n  the sample material, an endothermic or 

exothermic reaction takes place. The change in power required t o  

maintain the sample holder a t  the same temperature a s  the reference 

temperature ( i  .e. i t s  programmed temperature) d u r i n g  the transition i s  

recorded a s  a peak. The chart abscissa indicates the transition 

temperature and the peak area indicates the total energy transfer t o  or 

from the sample. T h i s  direct calorimetric measuring principle of the 

instrument requires tha t  each sample holder has a built-in heater and  a 

temperature sensor. 

In the present work, the DSC-2 was upgraded t o  provide extra 

cooling capac i ty  w h i c h  can support operations down t o  -40°C by means of 

Intercooler 11. In order to  prevent moisture condensations on the 

sample holders while operated i n  the subambient environment, a package 

of intermediate range subambient accessory has a1 so been instal led. The 

heating chamber i s  enclosed i n  a d ry  box, and the sample holders can 

only be accessed through dry box gloves. A,nitrogen purge gas line has 

been connected a s  well. Dry box is  always purged w i t h  nitrogen before 

measurements started. The apparatus was installed i n  an air-conditioned 

room maintained a t  20°C and 50% relative humidity.  

3.1.3 Calibration 

The DSC-2 calibrations include the following: temperature 

(abscissa 1, energy (ordinate), a conversion constant K determination and 

the baseline opt imizat ion.  All calibrations were performed by fo l lowing  

the procedure recommended by the manufacturer [lo]. 
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Three standard mater ia ls ,  Indium, Z inc  and Potassium Chromate were 

used i n  the  c a l i b r a t i o n .  The c h a r a c t e r i s t i c s  o f  these th ree  m a t e r i a l s  

a re  g iven a s  fo l l ows :  

T r a n s i t i o n  P o i n t  (K) T r a n s i t i o n  Energy (cal/gm) 

Indium 429.78 6.80 

Z i n c  692.65 25.90 

K2Cr04 943.7*0.5 8.50 

The temperature c a l i b r a t i o n  i s  accomplished w i t h  the  TEMP CALIB and 

TEMP CALIB RANGE c o n t r o l s  o f  DSC-2. The c o n s t r u c t i o n  f o r  de termin ing  

t r a n s i t i o n  temperature i s  shown i n  Fig. 3.1. 

By scanning standard ma te r ia l s  dynamical ly  a t  a g iven r a t e ,  

t r a n s i t i o n  can be observed and the  t r a n s i t i o n  temperature can be 

and a c t u a l  

on was used 

CALIB RANGE 

determined . The comparison between measured temperature 

re fe rence  temperature can then be made. The f o l l o w  

t o  determine the change r e q u i r e d  i n  the  s e t t i n g  of 

c o n t r o l  . 
- 

[ 1 - 2 ''1 NO 
1000 

AR = R r  [ 
 AT^^^ 

ng equat 

the TEMP 

(3.1) 

where 

AR ---- number o f  d i v i s i o n s  change r e q u i r e d  t o  a d j u s t  TEMP 

CALIB RANGE con t ro l  

R r  ---- s e t t i n g  o f  TEMP CALIB RANGE c o n t r o l  

---- d i f f e r e n c e  between measured t r a n s i t i o n  tempera tu res  AT IN0 

ATACT ---- d i f f e r e n c e  between the  a c t u a l  re fe rence tempera tu res  
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\TRANSITION 
TEMPERATURE 

Temperature 

Fig,. 3.1 The c o n s t r u c t i o n  fo r  determining t r a n s i t i o n  temperature. 
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By means of TEMP CALIB RANGE control adjustment, the difference 

between  AT^^^ and ATACT can be minimized. The c a l i b r a t i o n  on 

) i s  less t h a n  f 0.5 temperature scale i s  completed when 

K. The observed transition temperature for a l l  the standards should be 

w i t h i n  2 K of their a c t u a l  values. A typical thermogram o f  K2Cr04 a n d  

Indium i s  shown i n  F i g .  3.2. In the present work, the deviation of 

measured temperature and actual temperature was within f 1 K ,  w h i c h  i s  

quite sa t i s f ac to ry  for our measurement. 

 AT^^^   AT^^^ - 

The energy calibration involves the determination of calibration 

constant K and i s  accomplished w i t h  the AW BALANCE control. In 

practice, the measurement of energy w i t h  the Model DSC-2 will 

necessarily involve considerations o f  an instrument calibration 

constant, the recorder chart  speed, the sensitivity used, and  the u n i t  

employed for area measurement, etc. To measure the total energy 

associated w i t h  a transition or reaction, i t  i s  necessary t o  integrate 

over the area under the peak w i t h  respect to  time 

A H = , f x d t  dH (3.2) 

The area of a peak i s  directly proportional t o  the energy of the change 

per u n i t  weight, AH, in calories per gram, the sample w e i g h t ,  W a n d  

the cha r t  speed S. I t  i s  also inversely propor t iona l  t o  the instrument 

RANGE setting, Rr. Therefore, we have 

( 3 . 3 )  

where K i s  a proportionality constant and R '  i s  setting RANGE o f  DSC. 

From the calibration w i t h  a standard material like Indium or Zinc 

through the adjustment of the AN ca l ib ra t ion  control ,  one can o b t a i n  
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the va lue o f  K from Eq. (3.3). Table 3.1 shows the r e s u l t s  obta ined f o r  

c a l i b r a t i o n  cons tan t  K used i n  the present  work. 

The base l ine  o p t i m i z a t i o n  i s  accomplished w i t h  SLOPE c o n t r o l  and 

AT BALANCE con t ro l .  By ad jus t i ng  AT BALANCE and SLOPE c o n t r o l ,  the 

cu rva tu re  and the dec l i ne  of basel ine cou ld  be improved u n t i l  the  

s a t i s f a c t o r y  f l a t n e s s  o f  the basel ine i s  obtained. Since the base l i ne  

a f f e c t s  the area o f  thermogram measured, i t  i s  recommended t h a t  the 

base l i ne  o p t i m i z a t i o n  be conducted f o r  d i f f e r e n t  scanning c o n d i t i o n s  and 

ma te r ia l s .  

3.1.4 Measurements o f  Degree o f  Cure a ( t )  

The degree o f  cure was defined as the f r a c t i o n  of heat  released, up 

t o  t ime t f o r  the r e s i n  system under cure C5l measured by Perk in -= l  mer 

DSC-2. The measurement was made under the dynamic cure c o n d i t i o n  w i t h  a 

g iven heat ing  ra te .  Dur ing the temperature scan, the  r a t e  o f  heat  

generated was recorded and p l o t t e d  versus t ime and the  area under the  

curve prov ided the  amount o f  heat re leased (Fig. 3.3). The t o t a l  heat  

of reac t ion ,  HT, i s  c a l c u l a t e d  by the express ion 

(3.4) 
0 

L 

where tf i s  the t ime r e q u i r e d  t o  complete the  reac t i on .  The heat  

re leased up t o  t ime t, H, cou ld  also be c a l c u l a t e d  as 

+ 

H = IL $ d t  
+ 

(3.5) 

and the degree o f  cure can be determined by 
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Table 3.1 DSC c a l i b r a t i o n  constant  determined from 
the  thermogram o f  standard m a t e r i a l  
Indium (weight = 5.0 mg, AH = 6.8 cal/gm 
and heat ing  rate = 20 K/min) 

Chart .  Rec. 
Speed Range 
sec / i  n. mca 1 /sec 

Area 
i n2 

K 
l / i n  

5 10 7 .O 0.97 

5 20 3.53 0.96 

10 

20 

10 

10 

3.55 

1.76 

0.96 

0.97 
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H a = -  
HT 

(3.6) 

The rate or degree of cure can also be calculated by the expression 

d a  1 dH - = - -  
d t  HT d t  

The measurements of degree o f  cure were 

resin system under dynamic cure c o n d i t i o n s  

outlined above. The heating rates were 

(3 .7 1 

made on Hercules 3501-6 net 

according t o  the procedure 

10, 20, 40 and  80 K / m i n  

respectively. The total heat of  reaction, H ,  is  calculated by a 

numerical integra tion scheme based on Simpson's rule [ll]. Experimental 

results are presented i n  Chap. 4. 

3.1.5 Measurements o f  Glass Transition Temperature Tg(  t) 

Mea suremen ts o f  glass transi t ion tempera ture under b o t h  dynamic and  

isothermal cond i t ion  were performed. Dynamic curing experiment was 

performed as follows: The  sample was f i r s t  heated a t  heating rate of 20 

K / m i n  from 260 K to  a specified temperature. A r a p i d  quench to the 

in i t ia l  temperature then followed. The resultant thermogram was 

obtained by re-scanning the sample a t  a rate of 20 K / m i n .  A new desired 

temperature could be reached i n  this stage and  subsequent measurements 

could be performed on the same sample. The experimental cure cycle i s  

shown i n  F ig .  3.4.  

In the present s tudy ,  glass transition temperature a t  eight 

different states (during the advancement of the reactive resin system 

cured a t  a constant  rate of  heating cond i t ion  of 20 K/min) were 

measured. The measurements were repeated for  ten different samples. 
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I n  the isothermal  scanning measurement, the experiment was 

performed as fo l lows:  The sample was f i r s t  heated a t  a r a t e  o f  320 

K/min from 260 K to a spec i f i ed  cu r ing  temperature. A t  the complet ion 

o f  va r ious  ho ld ing  t imes a t  the  temperature, a r a p i d  quench t o  i n i t i a l  

temperature f o l l  owed. Subsequent thermograms were ob ta ined by re -  

scanning the quenched samples a t  a r a t e  o f  20 K/min from 260 K to a 

temperature above i t s  Tg. A number o f  measurements o f  g lass  t r a n s i t i o n  

temperature under i so therma 1 scanning condi t i o n  wa s conducted. The 

se lec ted  c u r i n g  temperatures and the l e n g t h  o f  c u r i n g  t imes were 

determined accord ing t o  the reac t i on  k i n e t i c s  repo r ted  by Lee e t  a l .  

CSl. 

3.2 Rheological Measurements 

3.2.1 Sample Prepara t ion  

A1 1 samples were precondi t ioned a t  room temperature by press ing  

about  30 gm o f  r e s i n  between two pieces of non-porous Te f lon  c l o t h  (CHR- 

6TB) t o  produce a r e s i n  wafer w i th  a th ickness  o f  1.25 mm. The wafers  

were s to red  i n  a vacuum oven f o r  a couple of hours a t  a temperature o f  

abou t  340 K u n t i l  the v o l a t i l e  bubbles were no longer  ev ident .  The 

sample p recond i t i on ing  was used t o  remove mois tu re  and any o t h e r  

v o l a t i l e s  t h a t  m igh t  c rea te  e r r a t i c  v a r i a t i o n s  i n  rheology. A f t e r  

degasing, the  sample was s to red  i n  the r e f r i g e r a t o r  and removed j u s t  

p r i o r  t o  the experimental measurement. A d i s k  sample was prepared by a 

c i r c u l a r  puncher w i t h  a diameter o f  2.50 cm. 
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3.2.2 Apparatus 

The Rheometrics System Four [12] was used t o  measure the 

r h e o l o g i c a l  p r o p e r t i e s  of the ma te r ia l  

The Rheometrics System Four i s  a f u l l y  automated l a b o r a t o r y  

i ns t rumen t  f o r  c h a r a c t e r i z i n g  the r h e o l o g i c a l  p r o p e r t i e s  o f  a broad 

range o f  m a t e r i a l s  i n c l u d i n g  so l ids,  f l u i d s  and mel ts .  I t  i s  a modular 

designed system o f  f ou r  independent servos l i n k e d  t o  a common computer 

system f o r  c o n t r o l  and data acqu is i t i ons .  These f o u r  servo motors are:  

Dynamic, L inear ,  F l u i d s  and Steady which a r e  se lec ted  f o r  optimum 

response i n  t h e i r  respec t i ve  modes a l l o w i n g  a broad range o f  t e s t  

geometrics and deforma t i o n  h i s to r i es .  

The dynamic servo motor and a p a r a l l e l  p l a t e  t e s t  geometry a r e  

se lec ted  i n  the  present  study t o  measure chemoviscosity of the r e a c t i o n  

epoxy r e s i n  system. Sample temperature i s  c o n t r o l l e d  w i t h  a convected 

gas environmental chamber. The torque and normal f o rce  generated i n  

response t o  the imposed motion i s  measured by the transducer. The 

computer c a l c u l a t e s  s t resses  from the  torque and normal force 

mea suremen t s  and combines these Val ues w i  t h  measured sample deforma t i o n  

t o  c a l c u l a t e  values of the se lected r h e o l o g i c a l  p roper t i es .  The 

computer and associated e l e c t r o n i c s  a l s o  p rov ide  p r e c i s i o n  c o n t r o l  and 

r a p i d  data a n a l y s i s  w i t h  r e s u l t s  conven ien t ly  p r i n t e d  o u t  i n  g raph ica l  

and t a b u l a r  forms. 

I n  measuring chemoviscosity of  Hercu les 3501-6 epoxy res in ,  a t ime 

sweep mode o r  cure mode were se lected r e s p e c t i v e l y  i n  i so thermal  o r  

dynamic cure cond i t ion .  
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3.2.3 Calibration 

The  cal ibrat ion of Rheometrics includes: transducer normal and 

torque cal ibrat ion,  temperature calibration and phase cal ibrat ion.  

Transducer calibration must  be performed whenever a transducer i s  

changed. Periodic calibration checks should be performed to ensure the 

accuracy of test resu l t s .  Calibration i s  accomplished through adjust-  

ment of normal cal ibrat ion control and torque control by comparing 

measured data w i t h  standard weight. 

The  phase calibration i s  accomplished to  compensate for phase s h i f t  

i n  the electronics  through the adjustment of appropriate potentiometer. 

Calibration was performed w i t h  the dynamic motor i n  TORSION RECT u s i n g  

an e l a s t i c  material such a s  steel  which possesses a phase angle of zero 

degrees and a low viscosity newtonian f l u i d  w h i c h  possesses a '  phase 

angle o f  -90 degrees. Calibration i n  TORSION RECT or BENDING w i t h  a 

materia1 such a s  s tee l  is the preferred method a s  the phase angle of 

s tee l  is not frequency or s t ra in  dependent.  For newtonian f l u i d s  and 

e l a s t i c  samples, the tolerance i s  -0.4 and -0.25 degrees respectively. 

3.2.4 Mea suremen t of Chemovi scosi t y  

The  chemoviscosity data under isothermal condition has been 

The selected temperatures were 360, 375, 385, measured previously [13]. 

399, 410, 425 and 435 K. 

The measurement of chemoviscosity i n  a dynamic case was conducted 

i n  present study. Dur ing  the measurement, the sample was confined to  

the gap between two parallel  plates mounted i n  the Rheometer. The top 

plate  was motor driven about i t s  axis while the bottom plate  was mounted 
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on a torque transducer for force measurement. The t y p i c a l  gap between 

the parallel plates was 1.2 m. The plates and sample were enclosed i n  

a heating chamber where temperature control was provided. Selection of  

the strain value was t o  assure t h a t  the measurements were performed 

w i t h i n  the material's linear viscoelastic response range. 

I t  i s  well known t h a t  the viscoelastic properties of polymeric 

materials respond differently t o  different frequencies, and  selection of 

the frequency value was made t o  assure t h a t  the complex viscosities 

measured were w i t h i n  the Newtonian region C121. The cure mode of the 

Rheometer was used during testing w h i c h  automa t i c a l  l y  programmed 

different temperature profiles as the epoxy was cured. 

The sample was f i r s t  kept a t  300 K for a b o u t  5 minutes before 

measurement started. Experimental measurements were performed under 

different rates of heating condi t ions.  



Chapter 4 

EXPERIMENTAL RESULTS 

4.1 M a t e r i a l  

The m a t e r i a l  used i n  the  study i s  Hercules 3501-6 n e t  epoxy 

res in .  Th is  thermoset t ing system was se lec ted  because o f  i t s  wide use 

i n  aerospace indus t r y .  The mater ia l  rece ived  from the  manufacturer was 

used w i t h o u t  f u r t h e r  treatment, and was kep t  i n  the dark and c o l d  

c o n d i t i o n s  a t  around -5'C. 

The m a t e r i a l  con ta ins  the f o l l o w i n g  standard concent ra t ions  o f  

s t a r t i n g  components C141: 

COMPONENT TOTAL PERCENT (wt )  

Tegrag lyc idy l  Methy lened ian i l ine  56.5 

9.0 A 1  i c y c l  i c  Diepoxy Carboxylate 

Epoxy Cresol Novalac 

4 ,4 '  Diaminodiphenyl Sulfone 

Boron T r i f l u o r i d e  Amine Complex 

0.5 

25.0 

1.1 

4.2 Experimental D a t a  o f  Thermal Ana lys is  

4.2.1 Degree o f  Cure a ( t )  

4.2.1.1 Isothermal  Case. Lee e t  a l .  [SI performed thermal 

analyses on the same epoxy r e s i n  system by DSC. The degree o f  cure 01 

and the r a t e  o f  change o f  degree of cure d a / d t  were determined f rom 

25 
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the results of the isothermal scanning experiments. E i g h t  different 

temperatures were selected, and the results are reproduced i n  F i g .  

4.1. I t  is noted from the figure t h a t  b o t h  higher values of the degree 

of cure a n d  rate o f  change of degree of cure are decreasing functions of 

cure time t, and eventually level off a t  a low value (< 0.1) when a h i g h  

degree o f  cure i s  reached. The fol lowing equations were found t o  

describe the tempera ture-dependent data rather accurately : 

where 

+ K  a)  (1-a) (B-a)  
da/dt = (Knl 

d d d t  = K ( I -a)  
"3 

K = A1 exp(-AEl/RT) 

= A2 exp(-AE2/RT) 
Kn2 

a 0.3 

> 0.3 

K = A j  exp(-AE3/RT) 
"3 

The values o f  constants i n  Eqs. (4 . la )  and  ( 4 . l b )  are summarized i n  

Table 4.1. Comparisons between the measured values of d a / d t  and the 

values calculated by Eqs. ( 4 . l a )  and ( 4 . l b )  are also shown i n  F i g .  4.1 

by symbols a n d  solid lines respectively. 

4.2.1.2 Dynamic Case. The measurements o f  heat o f  reaction and  

degree of cure under dynamic hea t ing  condition were performed w i  t h  four 

different heating rates, 10, 20, 40 and 80 K/min respectively. A 

t yp ica l  thermogram a t  20 K/min i s  shown i n  F i g .  4.2. I t  is  seen t h a t  

there are two "humps" i n  the curve. These humps are caused by two 

different major reactions occurring d u r i n g  the cure. The total hea t  of 



F i g .  4.1 Rate o f  degree o f  curve vs.  degree o f  cure repor ted  by Lee, 
Loos and Springer [SI for Hercules 3501-6 r e s i n  system 
under isothermal cure cycles; sol i d  l i n e s  were c a l c u l a t e d  
using Eqs. ( 4 . l a )  and ( 4 . l b ) .  
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Table 4.1 Values o f  constants Eqs. ( 4 . l a )  and ( 4 . l b )  for 
Hercules 3501-6 resin system under isothermal 
condition 

B = 0.47 

A~ = 2.101 x lo9 min-1 

A2 = -2.014 x lo9 min'l 

A3 = 1.960 x lo5 min'l 
AE1 = 8.07 x 10 4 J/mole 

AE2 = 7.78 x 10 4 J/mole 

AE3 = 5.66  x 10 4 J/mole 
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r e a c t i o n  H was c a l c u l a t e d  by numerical i n t e g r a t i o n  accord ing  t o  the  

Simpson's r u l e .  The a l g o r i t h m  was programmed i n  FORTRAN and was r u n  by 

a VAX computer system. Program codings a r e  i nc luded  i n  Appendix B f o r  

re ferences.  Ca lcu la ted  r e s u l t s  are tabu la ted  i n  Table 4.2. I t  can be 

seen t h a t  HT i s  independent of heat ing ra tes .  An average va lue o f  H t  = 

120k5.0 cal/gm was chosen t o  be used i n  a l l  f u t u r e  c a l c u l a t i o n s .  The 

t o t a l  heat  o f  r e a c t i o n  ca l cu la ted  by Lee e t  a l .  [SI i n  dynamic scanning 

exper iment  was 113.4 cal/gm. A ten percent  d i f f e r e n c e  between the two 

r e s u l t s  i s  noted. Th is  i s  poss ib ly  caused by m a t e r i a l s  w i t h  d i f f e r e n t  

a g i n g  h i s t o r i e s  and the  scheme employed i n  de termin ing  thermogram and 

the area under the peak of the curve. 

The degree o f  cure a ( t )  was a l s o  c a l c u l a t e d  based on the 

thermograms. The r e s u l t s  a r e  p l o t t e d  i n  F ig .  4.3. Open and f i l l e d  

symbols rep resen t  r e s u l t s  from d i f f e r e n t  runs  under the same cond i t i on .  

The r e p r o d u c i b i l i t y  o f  the measurements appears t o  be very s a t i s f a c t o r y .  

Numerical s o l u t i o n  o f  Eqs. (4.la) and (4. lb)  under dynamic heat ing  

c o n d i t i o n  where temperature was n o t  k e p t  cons tan t  i s  o u t l i n e d  as  

fo l lows.  

I n  a dynamic hea t ing  case, r e a c t i n g  k i n e t i c s  o f  r e s i n  system 

becomes a f i r s t - o r d e r ,  non- l inear and i n i t i a l - v a l u e  d i f f e r e n t i a l  

equat ion,  i .e., 

Assume t h a t  f i s  s u f f i c i e n t l y  d i f f e r e n t i a b l e  w i t h  r e s p e c t  t o  e i t h e r  t o r  

a f  
a. It i s  known [151 t h a t  Eq. (4 .2)  possesses a unique s o l u t i o n  i f  

i s  cont inuous on the i n t e r v a l  of  i n t e r e s t .  I f  a ( t )  i s  the e x a c t  

s o l u t i o n  o f  Eq. (4.21, then we can expand a ( t )  i n  a Tay lo r  s e r i e s  

about  the p o i n t  t = to as 
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Table 4.2 To ta l  heat  o f  r e a c t i o n  fo r  Hercules 3501-6 
r e s i n  system measured a t  d i f f e r e n t  r a t e  o f  
heat ing  cond i t i ons  

~- 

Heating Chart. Rec. 
Speed Range "T Weight Rate 

mg 'K/mi  n . s e d i n .  mcal/sec ca 1 /gm 

4.6 

5.5 

6.4 

5.2 

6.7 

5.7 

7.6 

5.3 

10 

10 

10 

20 

20 

40 

80 

80 

60 

60 

60 

40 

40 

20 

10 

10 

0.5 118.702 

0.5 120.129 

0.5 126.472 

0.5 119.474 

0.5 119.474 

1.0 125.37 

2.0 118.34 

2.0 118.32 

Heat ing  Rate ('K/min) Ave. RT (ca l /gm) 

10 121.77 f 4.136 

20 

40 

80 

122.39 f 4.131 

120.02 f 6.26 

118.3 f 2.21 
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a a ( to )  ( t  - to) 2 2  a “ ( t o )  

2!  (4.3) at2 + ‘0) a t  a ( t )  = aO + ( t  - 

By t a k i n g  the  t o t a l  d e r i v a t i v e  o f  Eq. (4 .2)  w i t h  respec t  t o  t, (keeping 

i n  mind t h a t  f i s  an i m p l i c i t  f unc t i on  o f  a), we have 

For  a < 0.3: 

f ( t ,  a) = (K + K a) ( 1  - a) (B - a) 
nl “2 

(4 .6)  

- -  af - K ( 1  - a)  (B  - a )  - (Knl + Kn2 a) ( B  - a) - (Knl+ Kn2 a)  (1 - a )  aa n2 
(4.8) 

For a > 0.3: 
3 

f ( t ,  a )  = A3e ‘Rkt(l - a) = Kn ( 1  - a) 
3 

2 2  
aai At i  a a 1 

‘ZTat2 = ai + At i  at + i +1 a 

(4 .9)  

(4.10) 

(4.11) 

(4.12) 
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where i = 0, 1, 2, 3,,.., and 

a > 0.3 (4.13b) 

+ K a i )  (1 - a i )  (B - a i ) ]  
n2 

2 
2 

Kn3 ( l  - a i )  
(1 - a i )  - a ai AE3 

at2 = z Kn3 

a < 0.3 (4.14a) 

a > 0.3 (4.14b) 

The numerical r e s u l t s  a r e  plotted by so l id  curves i n  F ig .  4.3. 

Consider ing the f a c t  t h a t  the temperature ranges of 400 t o  475 K covered 

by isothermal experiments, a s  represented by Eqs. (4 . la )  and (4.lb1, i s  

narrower than the ranges of 320 to 600 K covered here by the dynamic 

h e a t i n g  experiments, the agreements shown i n  the f igure  are r a the r  

s a t i s f a c t o r i l y .  Figure 4.3 also implies t h a t  information such a s  

chemoviscosity q ( t )  and degree of cure a ( t )  under  dynamic heating 

cure condi t ions can be related w i t h i n  certain accuracy to  those ob ta ined  

u n d e r  isothermal curing conditions. 



4.2.2 Glass Trans i t i on  Temperature T g (  t )  

4.2.2.1 Isothermal Case. I t  was found t h a t  the major r eac t ion  o f  

mater ia l  occurred w i t h i n  the range of 420 to  500 K i n  dynamic curing 

condi t ion .  The range of degree o f  cure was between 0.1 a n d  0.5. I t  i s  

the range i n  w h i c h  the simulations of the chemoviscosity-time p r o f i l e s  

are performed. 

The g l a s s  t r a n s i t i o n  temperature T g ( t )  was determined for  

isothermal cur ing  condi t ions  a t  f i ve  temperatures of 430, 440, 450, 460 

and 480 K r e spec t ive ly .  A set of three degrees of cure was s e l e c t e d  f o r  

each curing temperature as shown i n  Table 4.3. The corresponding set  of 

cu r ing  time, t, was determined by so lv ing  Eqs. ( 4 . l a )  and ( 4 . l b )  

i so thermal ly ,  and this  i s  presented by 

K 
a n 2  

n l  
t = R n ( 1  + K a )  - b ln(1-a) - c R n ( 1 -  i) a < 0.3 (4.15a) 

a > 0.3 (4.15b) 

where 
a = K:z (B-l) /d  

c = -  (K + K ) / d  
nl n2 

n2  
1 ( K  n 2  B2 + (Kn 1 - - K n l }  

and  t c  is the time given by Eq. 4.4a f o r  a = 0.3. The seiected curing 

temperatures and the l e n g t h  of curing times f o r  isothermal measurements 

a r e  tabula ted  i n  Table 4.3. 
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Table 4.3 Glass t r a n s i  t i o n  temperature measured f o r  Hercules 
3501-6 r e s i n  system dur ing  f i v e  isothermal  cur ing  
condi ti on s 

Curing Curing Degree o f  Class Trans. 

Temp . T i  me 

(min. 1 

Cure Temp. 

0.85 0.1 298.0 

430 2.53 0.2 304.25 

6.73 0.3 313.7 5 

0.67 0.12 300 25 

440 1.82 0.22 306.25 

4.73 0.32 316.88 

450 

0.55 0.15 307 .O 

1.47 0.25 316.25 

3.78 0.35 325.25 

0.92 0.25 318.0 

460 2.48 0.35 329.5 

4.75 0.45 343.7 5 

1.3 0.35 338.3 

48 0 2.37 0.45 361.75 

3.83 0.55 385.3 
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A s e t  o f  t y p i c a l  t races obtained from isothermal  measurements i s  

shown i n  Fig. 4.4. During the glass t r a n s i t i o n ,  the mater ia1 undergoes 

a t r a n s i t i o n  from glassy s t a t e  t o  rubbery s tate,  and the  s p e c i f i c  heat  

Cp o f  the  m a t e r i a l  i s  changed. Thus, a s tep  change i s  observed i n  the 

thermogram. Tg i s  determined a t  the  arrow marks shown i n  the curve. 

The data ob ta ined from the measurements i s  l i s t e d  i n  Table 4.3. 

I t  i s  found t h a t  the glass t r a n s i t i o n  temperature i n  i so thermal  

c u r i n g  c o n d i t i o n  depends n o t  only on the  degree o f  cure ( o r  c u r i n g  

t ime) ,  b u t  a l s o  the cu r ing  temperature. A p l o t  o f  Tg vs.  a a t  va r ious  

c u r i n g  temperatures i s  g iven i n  Fig. 4.5. The data was f i t t e d  by l i n e a r  

Leas t  Square technique. The r e l a  t i o n s h i p  between g lass  t r a n s i t i o n  

temperature and degree o f  cure can be expressed as 

Tg = d l ( T )  a ( t )  + d2 (4.16) 

where d l  i s  a temperature dependent parameter. 

An Arrhenius type p l o t  o f  d l  vs. 1/T i s  shown i n  Fig. 4.6. By 

means of l i n e a r  Least  Square fit, two s t r a i g h t  l i n e s  a r e  represented, 

r e s p e c t i v e l y ,  by 

Logdl (T)  = -639.56/T + 3.357 T < 450 K (4.17a) 

Logdl (T)  = -3216.49/T + 8.879 T > 450 K (4.17b) 

The c o r r e l a t i n g  f a c t o r s  o f  the above two l i n e a r  f i t s  a r e  0.999. 

4.2.2.2 Dynamic Case. The g lass  t r a n s i t i o n  temperatures f o r  t h e  

m a t e r i a l  a t  twelve d i f f e r e n t  s ta tes  d u r i n g  cure a t  a cons tan t  ra te  o f  

heat ing  c o n d i t i o n  o f  20 K/min were measured. The measurements were 

repeated fo r  ten d i f f e r e n t  samples. The method o f  de termina t ion  o f  Tg 
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f rom the t r a c e  was the  same as t h a t  i n  the  iso thermal  case. The 

measured r e s u l t s  a r e  tabu la ted  i n  Table 4.4 together  w i t h  degree o f  cure 

a ( t )  measured by the procedures o u t l i n e d  above. Average values o f  

T g ( t )  and standard d e v i a t i o n  a t  d i f f e r e n t  r e s i n  s t a t e s  de f i ned  by c u r i n g  

t ime t ( o r  c u r i n g  temperature T) are inc luded as we l l .  I t  i s  noted t h a t  

s tandard d e v i a t i o n s  increase for inc reas ing  scanning temperatures. 

D i f f i c u l t i e s  i n  determin ing Tg accurate ly  come from two sources: ( i )  

t h e  h igher  the  scanning temperatures, the  l e s s  sharpness f o r  the s tep 

change o f  dH/dt a t  the g lass  t r a n s i t i o n  temperature and ( i i )  the  

ex i s tence  of base l i ne  slope which i s  u s u a l l y  d i s t o r t e d  a t  h igher  

temperature regimes. Nevertheless, a 90% confidence l e v e l  can be 

achieved w i t h  f 3% o f  the exper imenta l ly  determined values o f  T g ( t ) .  

Values o f  T g ( t )  a r e  p l o t t e d  i n  F ig ,  4.7. For  the dynamic case, 

cure  cyc le  T ( t )  = 2 0 t  w i t h  a constant heat ing  r a t e  o f  20 K/min i s  

s u b s t i t u t e d  i n t o  Eq. (4.31, the glass t r a n s i t i o n  tempera tu res  i n  dynamic 

hea t ing  c o n d i t i o n  can then be ca lcu la ted  from the  formulas f o r  the  

isothermal  case. Comparisons between the c a l c u l a t e d  values ( t h e  s o l i d  

curve)  and exper imenta l  data are shown i n  Fig. 4.7. Favorable 

comparisons a r e  seen f o r  the changes o f  the g lass  t r a n s i t i o n  temperature 

i n  dynamic heat ing  case below 0.5 degree o f  cure, where the s imu la t i ons  

o f  the  chemoviscosi ty - t ime p r o f i l e s  a r e  performed. 

4.3 Experimental Data o f  Rheologica l  Measurement 

4.3.1 Isothermal  Case 

The chemoviscosity r e s u l t s  obtained f o r  i so thermal  c o n d i t i o n s  a r e  

shown i n  F ig .  4.8. The c u r i n g  temperatures a r e  360, 375, 385, 399, 410, 

425 and 435 K. I t  i s  noted t h a t  f o r  a h igher  cure temperature, a 



Lo 
N 
L n  

0 
4 
Lo 

0 
0 
L n  

Lo 

s 

0 
In 
d- 

L n  
N 
d 

3 
3 
U 

3 
N 
3 

-4 

? 
4 

Q, - 
U 

EQ,  aJ 
- a  
L 

aJc, 
L 
Jc, 
J m  

a r  

Lo 
U 
(0 

0 
0 

0 - l  

0 
s 

0, m 
m 
0 

0 

m 
N 
a 

0 

rl 
4 

0 
0 

m 
0 

0 
0 

PI 
0 
3 
3 
3 
. 

3 

U 

aJ 
L 
3 
L1 

e 
0 

Q, a 
L cn a 
3 

m 
Ln 
N 
U 

. 

h 

w 
Lo m 

0 

0 
4 
m 

P 
P 
N 

* 
D 
N 

+ 
I 

x) a. 
-I 
0 
3 

E 
3 

n 

n 

'5 
0 m 
U 

N 
Ln 
m 

'9 z 
m 

x) 
x) 
N 

? 
n 
0 
U 

4 
I 
n 
r3 
4 
0 
3 

3 

\ 

E 

10 
N 
U 

d 
10 
m 

h 

10 
0 
m 

0 

1 
Ir 
03 
N 

? 
m 
03 
N 

4 
I 

x) 

9 
3 
B 
3 

n 

2 
n 

m . 
4 
4 
d 

m 
u) 
m 

1 
m 
0 
m 

a 
eo 
N 

? 
m 
P 
N 

4 
I 
n 
x) 
rl 
-I 
9 
3 n 
E 
'3 

co 
w 
d 

'5 
co 
U 
m 

'I 
U 
0 
m 

a 
N 
eo 
N 

0 

-4 
I 
n 
x) 
3 
N 
0 
3 n 
5 

N 
00 m 

d 
N 
m 

U 
6, 
N 

? 
In 
P 
N 

N 
I 
n 
x) 
\ 
-4 
9 
3 
E 
3 

n 

co - m 

co tu m 

'5 
U m 
N 

? 
U 
P 
N 

N 
I 
n 
x) 
x) 
-I 
0 
3 
E 
'3 

n 

1 
4 
Ir 
m 

T 
m 
N 
m 

? 
In 

N 
m 

2 
c) 
x) 
N 

U 
I 

x) 
rl 
Q 
3 
E 
3 

n 

-I 

n 

t 
0 
aY 
m 

T 
d 
N 
m 

N n 
N 

? 
c) 
x) 
N 

U 
I 
n 
x) 
3 
U 
0 
3 n 
E 
'3 

rD 

N 
N 
U 

'u. 

00 
I- m 

W 

U 
In 
r) 

a? 

I- 

m 
N 
m 

b. 

m 
eo 
3 m 

h 

U n 
N 

. 

m 
m 

XI 
N 

. 
\ 

Et 
n 
c) 
x) 
N 

. 

0 7  - 



c 

C 
Q 
0 
v) 

C .- 
E 
Y 
0 
cu 

\ 

Q) 

9 
0 

0 
Q) 
a, 
m 
a, 
P 

L. 

cc 

L 



c 
C 



shor te r  c u r i n g  t ime i s  needed f o r  reaching the same v i s c o s i t y  l e v e l .  

For a g iven time, t, the i n i t i a l  decrease o f  v i s c o s i t y  du r ing  the c u r i n g  

was a t t r i b u t e d  t o  the temperature e f f e c t s .  Apparently, the non- 

l i n e a r i t y  o f  the isothermal  v i s c o s i t y  vs. t ime e x i s t s  f o r  the ma te r ia l .  

4.3.2 Dynamic Case 

Experimental r e s u l t s  o f  chemoviscosity i n  the dynamic case a r e  

shown i n  F igs.  4.9-4.11. Three d i f f e r e n t  dynamic heat ing  r a t e s  of 2, 3 

and 5 K/min were used. The i n i t i a l  decrease i n  v i s c o s i t y  i s  caused by 

the increase i n  cu r ing  temperature. A t  the ge la t i on ,  the v i s c o s i t y  i s  

no ted  t o  i ncrea se exponen t i a  1 ly . 
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Chapter 5 

CHEMOV ISCOSITY MODELING 

5.1 Theory 

The Williams-Landel-Ferry (WLF) theory [61 states t h a t  for Tg < T < 

(Tg+100 K ) ,  the temperature-dependent viscosity i s  given by the 

expression 

qT C l(T-Tg 1 
log (T) = - C2 + T-Tg 

T!3 
(5.1) 

where C1 a n d  C2 are material constants. The temperature dependency of 

the viscosi ty  a s  shown i n  Eq.  (5.1) has been tested and found valid for  

materials rang ing  from dilute polymeric systems and thermoplastic me1 t s  

to  rubbers a n d  elastomer. Equation (5 .1 )  can he derived from the semi- 

empirical Doolittle equation w h i c h  relates the viscosity to  the free 

volume of the liquid. T h i s  will be discussed later i n  this chapter, 

The normal use of the WLF equation for thermoplastic materials 

requires t h a t  the glass transition temperature Tg be constant while the 

temperature T is varied for the specific polymer under s tudy .  Equation 

( 5 . 1 )  i s  applicable for a temperature T up  t o  100 K higher t h a n  the Tg 

of the material. However, during cure of thermosetting resin, the 

monomers are ini t ia l ly  polymerized and cross1 i n k s  are formed later.  

T h i s  i s  a system where T g ( t )  is  chang ing  and the curing temperature T i s  

49 
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held constant (e.g. the isothermal case). The glass transition 

temperature Tg rises continuously and eventually approaches the curing 

temperature. Over the entire c u r i n g  cycle, the material structure 

actually undergoes a continuous phase transforma t i o n  from the low 

molecular weight liquid to the h i g h  molecular weight polymeric melt, a n d  

eventually transforms t o  form crosslinking networks. I f  i t  i s  assumed 

t h a t  T g ( t )  of the material is  always lower than the cure temperature T, 

and t h a t  ( T - T g ( t ) )  is  always w i t h i n  100 K, then the WLF theory should be 

applicable to  a l l  polymer structure phases d u r i n g  the cure. However, 

before Eq. (5.1) can be applied t o  describe the chemoviscosity of the 

curing resin, modifications have to  be made t o  properly account for the 

reaction time, t, of the thermosetting resin system. 

One method of i n t r o d u c i n g  reaction time fac tor  in to  the WLF 

equation i s  to express the glass transition temperature T g ( t )  as a 

func t ion  of a ( t ) ,  the degree of cure. Several different techniques 

have been used i n  literature which include thermal, spectrophotometric 

(FTIR)  and chroma tographic (HPLC) measurements t o  determine the extent 

of cure. In the present s tudy ,  we assume t h a t  for the resin system 

under investigation, a ( t )  a t  time t is  equal t o  the fraction of heat 

released, as measured by DSC, up  to  time t for the resin system under 

cure. The a ' s  thus determined are a func t ion  of the curing 

temperature and  time. The two material constants, C1 and C2, should be 

varied w i t h  reaction time because of the transformation of different 

material structures d u r i n g  cure. 



5.2 Chemoviscosi t y  Modeling 

The procedure used i n  modeling o f  chemoviscosi t i e s  o f  Hercules 

3501-6 epoxy r e s i n  i s  descr ibed by the f o l l o w i n g  two steps: 

1. Temperature-dependent mater ia l  constants  C1(T) and C2(T) i n  Eq. 

(5.1) a r e  f i r s t  determined by the  exper imenta l  data fo r  the 

mater ia1  cured under isothermal  cond i t ion .  

2. The chemoviscosity rl(t,T) es tab l i shed  by iso thermal  cure data 

under procedure 1 i s  al lowed t o  f o l l o w  va r ious  dynamic heat ing  

cure cyc les  T ( t ) .  The v i s c o s i t y  values thus ca l cu la ted  a r e  

compared w i t h  the experimental data. 

5.2.1 Isothermal  Case 

For  the  m a t e r i a l  cured iso thermal ly ,  the  r e l a t i o n s h i p  between 

degree o f  cure a ( t )  and cu r ing  t i m e  t i s  es tab l i shed  by i n t e g r a t i n g  

the  k i n e t i c s  model of Lee e t  a l .  C51. As discussed i n  Chap. 4, t h i s  i s  

g iven  by 

K 
a n2 t = K nn(l + K a)  - b An (1-a) - c Jn (1 - f )  a < 0.3 (4.4a) 
n, n1 

a 0.3 (4.4b) 

r e e  o f  cure a ( t )  i s  

t = - r A n  1 (m + t c  
"3 

Th'e g lass  t r a n s i t i o n  temperature Tg( t )  

r e l a t e d  exper imen ta l l y  by 

nd the d 

Tg = d l ( T )  a ( t )  + d2 (4.5) 
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where 
Logdl (T)  = -639.56/T + 3.357 T < 450 K (4.6a 1 

Logdl (T)  = -3216.49/T + 8.879 T > 450 K (4.6b) 

d2 = 283.0 

S u b s t i t u t i n g  Eqs. (4.4a1, (4.4b) and (4.5) i n t o  Eq. (5.11, t he  

c a l c u l a t e d  a ( t )  a t  

f i t  the experimental 

constants  C1 and C2. - -  

a g iven isothermal cure c o n d i t i o n  can be made t o  

data through the adjustments o f  the two m a t e r i a l  

i s  assigned a During the model c a l c u l a t i o n ,  kl 
value o f  10” poises. 

g lass- forming substances and polymer systems C161. 

Th is  i s  the v i s c o s i t y  determined a t  Tg f o r  many 

The C1(T) and C2(T) values determined f o r  seven d i f f e r e n t  

temperatures a r e  l i s t e d  i n  Table 5.1, and the model p r e d i c t i o n s  a r e  

drawn as a s o l i d  l i n e  i n  Figs. 5.1 t o  F ig .  5.7. I t  i s  noted t h a t  the  

model i s  capable o f  desc r ib ing  the  non- l inear  r e l a t i o n s h i p  between 

v i s c o s i t y  which i s  below the order of lo3* This  i s  considered a 

s i g n i f i c a n t  improvement over the  e m p i r i c a l  l i n e a r  model used by Lee e t  

a l .  C51. 

An Arrhenius p l o t  o f  C1 and C2 r e s p e c t i v e l y ,  vs. temperature, i s  

shown i n  Figs. (5.8) and (5.9). The l i n e a r  Least  Square technique was 

used aga in  and was found t o  f i t  the  data reasonably we l l .  The two 

s t r a  i g h t 1 i nes a r e  r e p r e  sen ted , respec ti ve 1 y , by 

C 1  = 4.067~10 - - 54.252 
T 

fo r  T < 382 K (5.2a) 
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Table 5.1 Values of C1 and C2 determine for 
seven different tempera tures under 
isothermal condition. 

C1 c2 Tc ( K )  

360 

37 5 

38 5 

399 

410 

425 

435 

~ ~~ 

59.0 300 

53.5 300 

51.8 300 

85.7 600 

110.7 850 

128.7 1100 

133.4 1300 
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C2 = 300 

5 1  
T C 1  = 1 2.776~10 - 779.09 

fo r  T > 382 K (5.2b) 

6 1  
T C2 = -3.33~10 - + 8959.65 

These temperature dependent C l (T)  and C2(T) a r e  used t o  s imu la te  the 

chemoviscosi t y - t ime p r o f i l e s  under dynamic heat ing  cases. 

5.2.2 Dynamic Heat ing Case 

S i m i l a r  techniques as those used i n  the iso thermal  cases a r e  

employed here. The advancement i n  the  degree o f  cure under dynamic 

h e a t i n g  cond i t i ons  can be ca lcu la ted  from Eqs. (4. la) and (4. lb)  by 

means o f  the Tay lo r ' s  se r ies  expansion as discussed i n  Sec. 4.2. By 

s u b s t i t u t i n g  Eqs. (4.51, (5.2a) and (5.2b) i n t o  Eq. (5.11, the 

chemoviscosity-t ime p r o f i l e s  f o r  the r e s i n  system cured under dynamic 

hea t ing  cond i t i ons  can be simulated. 

Values o f  a ( t )  determined by the  T a y l o r ' s  s e r i e s  expansion depend 

s l i g h t l y  on the  t ime i n t e r v a l  A t  chosen. T h e o r e t i c a l l y ,  a ( t )  can be 

determined more accu ra te l y  when a smal le r  A t  i s  used. The e f f e c t  o f  

s tep s i z e  A t  on the ca l cu la ted  degree o f  cure a ( t )  i s  g iven i n  Table 

5.2. The d i f f e r e n c e s  i n  a ( t )  are w i t h i n  2% and a r e  n e g l i g i b l e .  The 

s tep s i z e  o f  At-0.01 was chosen for a l l  c a l c u l a t i o n s .  

Chemoviscosi t i e s  o f  the Hercules 3501-6 epoxy r e s i n  system under 

dynamic heat ing  cure c o n d i t i o n  were obta ined a t  hea t ing  r a t e s  2, 3 and 5 

K/min, respec t i ve l y .  All  cure cyc le  were s t a r t e d  a t  300 K. The r e s u l t s  

of the model p r e d i c t i o n s  a re  shown as s o l i d  curves i n  F igs.  5.10-5.11. 
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Table 5.2 The ca lcu la ted  degree o f  cure a ( t )  by 
d i f f e r e n t  time step s i z e  A t  

a(  t )  

Curing Time (min) At=0.01 At=O.  05 A t = O . l  

6 .150226 .153258 .157 127 

8 0 347 57 9 .35 1781 .357062 

.606030 .611808 .619061 10 

12 .899822 .go4560 .910432 
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Time (rnin.) 

F i g  . 5.10 Chemovi scosi t y  o f  Hercules 3501-6 r e s i n  system under dynamic 
cur ing  condi t ion  a t  heating r a t e  o f  2 K/min; c i r c l e s  denote 
the experimental data; s o l i d  curve denotes the model 
p r e d i c t i o n  o f  Eq. (5 .1 ) .  
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Fig. 5.11 Chemoviscosity o f  Hercules 3501-6 r e s i n  system under dynamic 

heat ing  cond i t i on  a t  heat ing rate o f  3 and 5 K/min. 
respec t i ve l y ;  c i r c l e s  denote the experimental data; sol id 
curves denote the model p r e d i c t i o n  o f  Eq. (5.1). 
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I t  is  noted t h a t  the model calculations compared favorably w i t h  the 

experimental da ta  f o r  a l l  three cases. 

The WLF model used i n  the present s t u d y  was originally derived from 

the semiempirical Doolittle equation for the viscosity of a l i q u i d  as 

E173 

v - v  
R n q  = I n A "  + B "  (5.3) 

This gives an expression for  the viscosity of a system i n  terms of two 

constants A and B. The q u a n t i t y  V i s  the total volume o f  the system 

while V f  i s  the free volume available t o  the system. Rearrangement o f  

Eq. (5.3) gives 

Rnq  = RnA" + B"  (7 - 1) (5.4) 

where f i s  the fractional free volume V f / V .  I t  i s  assumed t h a t  above 

me g l a s s  transirion temperature, tne Traction tree volume increases 

linearly, t h a t  is  

f = f g  + af ( T  - Tg) T > Tg (5.5) 

where f is  the fractional free volume a t  T, f g  i s  the fractional f ree  

volume a t  Tg, and  i s  the thermal coefficient of expansion of the 

fractional free volume above Tg. Substituting Eq.  (5.5) i n t o  (5.31, the 

Doo1.i t t l e  equation becomes 

af 

(5.6) 

Equations (5.1) and (5.6) have the same form, and we can have 



68 I 

B '  I 

=- 

f 
=9  

'2 af 

(5.7 1 

where B", a parameter i n  the  D o l i t t l e  equa-ion, i s  exper imenta l l y  found 

t o  be c lose  t o  u n i t y .  

The concept o f  f r e e  volume i s  d i f f i c u l t  t o  d e r i v e  i n  a p rec i se  

manner. I n  an approximate way, we can represent  the segment o f  a 

polymer chain by r i g i d  bodies and the f r e e  volume as the holes presented 

between these segments as a r e s u l t  o f  packing requirements. Presumably, 

the  f r e e  volume reaches a constant value a t  Tg, which i s  too small t o  

a l l o w  the la rge-sca le  conformational rearrangements o f  the cha in  

backbones assoc ia ted  w i t h  Tg t o  occur. Above Tg, on the o ther  hand, 

f r e e  volume increases and becomes s u f f i c i e n t ' l f (  l a r g e  t o  a l l o w  such 

mot ions t o  occur. 

The constants  C1 and C2 have been shown t o  vary from polymer t o  

polymer [18]. Dur ing the cu r ing  of thermoset t ing  res in ,  the mononers 

a r e  i n i t i a l l y  polymerized and cross1 i n k s  a r e  formed l a t e r .  The m a t e r i a l  

undergoes continuous phase changes from d i l u t e  po lymer ic  s o l u t i o n s  t o  

polymer melts, and even tua l l y  the  elastomers. A s i n g l e  s e t  o f  C 1  and C2 

fo r  each isothermal  cu r ing  cond i t i on  i s  found here, however, t o  descr ibe  

the  chemoviscosi ty - t ime p r o f i l e  adequately. Th i s  s i n g l e  s e t  o f  values 

i s  t he re fo re  considered to  describe a m a t e r i a l  s t a t e  which represents  an 

average over var ious  s t r u c t u r e s  occu r r i ng  i n s i d e  the  m a t e r i a l  d u r i n g  

cure. Values o f  C1 and C2 do vary w i t h  d i f f e r e n t  i so thermal  c u r i n g  

temperatures as can be seen i n  Table 5.1. The f r a c t i o n a l  f r e e  volume 

and thermal expansion c o e f f i c i e n t  c a l c u l a t e d  by Eq. (5 .7 )  are  g iven i n  

Table 5.3. 

h 
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Table 5.3 The values of the fractional free volume and 
thermal expansion coefficient determined 
under isothermal condition 

Temperature c1 c2 
Tc ( K )  

f g 

~ 

3 60 59.0 300 7.36E-3 2.45E-5 

37 5 53.5 300 8.12E-3 2.71E-5 

385 51.8 300 8.38E-3 2.79E-5 

399 85.7 600 5.07E-3 8.45E-6 

4 10 110.7 850 3.83E-3 4.61E-6 

425 128 .7 1100 3.37E-3 3.06E-6 

435 133.4 1300 3.26E-3 2.51E-6 
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For the thermoset t ing r e s i n  system s tud ied  here, the magnitude o f  

f r a c t i o n a l  f r e e  volume i s  determined by two competing fac to rs .  On one 

hand, h igher  c u r i n g  temperatures c rea te  l a r g e r  d i l a t a t i o n a l  e f f e c t s ,  

which then generate l a r g e r  f r e e  volume i n s i d e  the  ma te r ia l ;  on the o the r  

hand, i nc reas ing  molecular  weights as a r e s u l t  o f  po l ymer i za t i on  

r e a c t i o n s  reduce the f r e e  volume due t o  the  e l i m i n a t i o n s  o f  number o f  

molecular  chain ends. The i n i t i a l  decrease i n  the  f r a c t i o n a l  f r e e  

volume f g  from Tc = 360 t o  385 K i s ,  there fore ,  a t t r i b u t e d  t o  the 

i nc reas ing  d i l a t a t i o n  e f fec ts  a t  h igher  c u r i n g  temperatures. This  i s  

a l s o  c o n s i s t e n t  w i t h  the slokJer advancement of r e a c t i o n s  observed i n  the  

chemoviscosity-t ime p r o f i l e s  i n  t h i s  temperature range. The decrease i n  

f g  from Tc = 385 t o  435 K suggest t h a t  a t  t h i s  temperature range, the  

po lymer i za t i on  r e a c t i o n  becomes a dominant fac to r .  

I 



Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

A new analytical model for simulating chemoviscosi t y  o f  thermo- 

setting resin has been formulated. The model i s  developed by modifying 

the well-established Williams-Landel-Ferry (WLF) theory i n  polymer 

rheology for thermoplastic materials. From this investigation, the 

following conclusions and recommendation are provided: 

1. By introducing relations between the glass transition temperature 

T g ( t )  and the degree of cure a ( t )  o f  the resin system under cure, 

the WLF theory is  modified to account for the f a c t o r  of reaction 

time. Thus  the model proposed i s  capable of simulating viscosity 

profiles i n  various cure cycles. 

2.  The reaction kinetics established based on the isothermal cure 

condition on the resin system i s  related to  the case of dynamic 

curing condition. T h i s  also provides the relation for the viscosity 

i n  the isothermal and dynamic cases. 

3. The glass transition temperature T g ( t )  i n  the isothermal case i s  

dependent not  only on the reaction time t, b u t  also on the cure 

temperature T. Nevertheless, the relationship o f  glass transition 

temperature T g ( t )  and  degree o f  cure a ( t )  established i s  a l s o  

v a l i d  for the case o f  dynamic c u r i n g  condition. 

71 
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4. A single set  of C1 and  C2 i s  found to describe adequately a material 

state w h i c h  represents an average over various structures t h a t  occur 

inside d u r i n g  each isothermal curing cond i t ion .  Thus, the C1(T) a n d  

C2(T)  may be included i n  the model t o  predict the chemoviscosity 

profiles under dynamic curing conditions. Theoretical results 

obtained from this model compare favorably  well w i t h  the 

experimental data. 

5. I t  is recommended t h a t  the present research be extended to  explore 

the a p p l i c a t i o n  o f  the model to  large scale processing. 
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APPENDIX A 

EVALUATION OF TOTAL HEAT OF REACTION AND DEGREE OF CURE 

The numerical a n a l y s i s  technique a p p l i e d  t o  determine the t o t a l  

heat  o f  r e a c t i o n  and degree o f  cure i s  summarized i n  t h i s  appendix. 

A thermogram obta ined from the DSC under the  dynamic hea t ing  

c o n d i t i o n s  i s  i l l u s t r a t e d  i n  Fig. A.l. The heat  o f  reac t i on ,  H, can be 

expressed mathemat ica l ly  as 

0 
L 

However, HT i s  ca l cu la ted  i n  p rac t i ce  by us ing  the f o l l o w i n g  formula 

KxAxRr 
HT =- 

where 

Ca 1 i bra t i o n  Cons tan  t K -------- 

( A . 2 )  

cal/gm 

l / i n c h  

Area under the peak o f  the curve 

Char t  recorder speed i nc h/sec s --- ----- 
R r  -------- Range ( S e n s i t i v i t y )  mea 1 / sec 

w -------- 

inch' A -------- 

Sa mpl e We i g h t mg 

O f  these parameters, a l l  o f  them are ins t rument  parameters which can be 

s e t  up a r b i t r a r i l y  except  the area under the peak o f  the  curve (F ig .  

A.1). 
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Y 

A x ’  

0’ 

X 

Fig. A . l  Illustration o f  the DSC thermogram o f  Hercules 3501-6 in heat 
of  reaction evaluation. 
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Two numerical techniques, cubic i n t e r p o l a t i n g  polynomial approx i -  

mat ion and numerical i n t e g r a t i o n  were used i n  the  c a l c u l a t i o n  of the 

area under the peak o f  the curve obta ined from the measurement o f  heat  

o f  r e a c t i o n  by DSC. 

For the  polynomial i n t e r p o l a t i o n ,  a s e t  o f  data i s  obta ined from 

the curve i n  the l e n g t h  scale as given below: 

n X i  ( i n c h )  x0, X I ,  X2 ......... x 

I n  o rde r  t o  genera l i ze  the ca lcu la t ion ,  the method o f  i n t e r p o l a t i o n  w i t h  

nonuni formly spaced x values was employed. S i m i l a r l y ,  we se lec ted  the  

d i v i d e d  d i f f e r e n c e  method ins tead o f  the Lagrangian polynomial method. 

Th is  permi ts  one t o  reuse the previous computation i f  i t  i s  d e s i r a b l e  t o  

add or s u b t r a c t  a p o i n t  from the s e t  used t o  c o n s t r u c t  the  polynomial.  

Looking a t  the  p r o f i l e  o f  F ig .  A.1, i t  was presumed t h a t  the data cou ld  

be f i t t e d  by a cub ic  i n t e r p o l a t i n g  polynomial.  The 3rd-degree 

polynomial can be w r i t t e n  as fo l lows:  

where do, al, a2 and a3 were determined by the d i v i d e d  d i f f e r e n c e  

method. 

The d i v i d e d  d i f f e r e n c e  i s  def ined as 

f l - f O  
fCxo, X I 1  = E 

1 0  
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a l s o  

f ( xo )  = f, 

I t  i s  known t h a t  

a. = fo 

al = f [ xoDx l l  

= fCx x x 3 
a2 0’ 1’ 2 

a3 = f[XODX1$X2$X31 

Thus, Eq. (A.3) can be r e w r i t t e n  a s  

P3 ( x )  = fo + (x’xo) f[xo’x,] + (x’xo) (X’X,) f[x x x ] 0’ 1’ 2 

+ (x-xo) (x-x,) (X-X,) fCx 0’ x 1’ x ZDX3’ ( A . 4 )  

Equat ion (A.4) can be a p p l i e d  t o  every f o u r  p a i r s  o f  g r i d  po in ts .  I f  we 

had a s e t  of data w i t h  ( n + l )  po in ts  j u s t  l i k e  x i  and y f ’  we would g e t  n- 

1/3 cub ic  i n t e r p o l a t i n g  polynomials. 

E ( x )  = R,(X) = (x-x,) (x-x,) (x-x,) (x-x ) f(4)(E) 
3 ‘o! 

It i s  w e l l  known t h a t  when one uses the cub ic  i n t e r p o l a t i n g  polynomia l ,  

the magnitude o f  the e r r o r  term i s  
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4 i f  l i m ( e r r o r 1  = Kh 4 E(x) = O(h 1, 
h+o 

Since the value of h i s  very small, E(x) = O(h4) becomes much smaller, 

then we can approximate 

Thus, the value of f ( x )  over the e n t i r e  i n t e r v a l  [xo,xn] can be 

computed. F i n a l l y ,  the generalized cubic i n t e r p o l a t i n g  polynomial can 

be expressed as 

Since every desired value of a l l  po in t s  over the e n t i r e  i n t e r v a l  

can be obtained by cubic i n t e r p o l a t i n g  polynominal mentioned above, the 

numerical i n teg ra  t i o n  would be app l i ed  d i r e c t l y  upon those points.  

Before conducting the numerical integra t ion,  the coordinate transforma- 

t i o n  i s  needed since the basel ine o f  the curve obtained from the 

experiments does no t  remain hor izontal .  Using the fo l l ow ing  formula 

x '  = (xi - xo) cosp + (yi - y o )  s ine i 

y; = - (xi - x,) s ins + (yi - yo )  cos@ (A.6) 

where i = 1, 2, 3,...,n 
f ( xn 1-f ( xo 1 

0 xn - x p = tan-' 
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a new s e t  o f  data i n  prime coord inates can be obta ined a s  

X I  i' ' XI 0' x i ,  x;,...,x' n 

I 1  
y; : Yo, Y1 '  Y;,.**,Y; 

Now, the d i v i d e d  d i f f e r e n c e  and Eq. (A.4)  i n  the  prime coord inates can 

be ob ta ined and a se r ies  value o f  f ( x ' )  can be ca lcu la ted .  

I n  c a l c u l a t i n g  the  area under the  peak o f  curve, the  Simpson Rule 

E l l ] ,  i s  employed and t h i s  i s  given by 

x2 
A = I f ( x )  dx = (fo+4fl+f2) +m 

.* 
( A . 7  1 

0 X 

h5 f ( 4 )  ( 5 )  = O(h5) n a l o c a l  e r r o r  where 

Equat ion (A.7) can be a p p l i e d  on every th ree  p a i r s  o f  g r i d  p o i n t s  f o r  a 

whole s e t  o f  data. Thus, f o r  e n t i r e  i n t e r v a l  (xo, xn), the t o t a l  area 

should be c a l c u l a t e d  by the fo l l ow ing  equat ion 

xn - x 
where 180 h4 f ( 4 1  ( 5 )  = O(h4) a g loba l  e r r o r  

Since the value o f  h se lec ted  i s  very small, O(h4) becomes much smaller, 

and one may approximate the area by 

n 
c (fi,l+4fi+fi+l) A '3 h 

i =1 
(A.9) 



A program for calculating the area by employing the above procedure has 

been coded and  l i s t ed  in Appendix B.  
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APPENDIX B 

COMPUTER CODE FOR APPENDIX A 
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01 RE N S  I O N  
D I H k N S I O N  X F I N E R 1 1 0 0 0 1 ~ X P R I H ( l C O O l r Y P R 1 ~ ~ l O O O )  

H A T E  R ( 2 5  I 9 X(60 I r Y (  6 0 )  . T A B L E  ( 60960  1 r Y F  I NE R ( 1000 I 

C 
C o o .  I N P U T  R A T E R I A L  P R O P E R T I E S  

R E A D  (23 r 10 1 t H A T E R  ( I 1 r I - l r 2 S  1 
W R I T E  1 6 9  2 0 )  I H A T E R  ( I r I-1925 I 

10 F O R R A T 1 2 5 l A 4 )  1 
20 F O R H A T  ( 5 X r 2 5 ( A 4  1 1 

R E A D (  23 
WR I T E  ( 6 r 3 0 1  &E ICHT,  RANGE ( H E A T  e CHAR, HOLDTI  GRTHT, A L P H A  CK 

* I H E  I GHT * R  ANCE (HEAT C H I  R r H O L D T  T C R T H T  r A L P  HA t C K 9 C H  CN 
C 4, Ch 

30 F O R H A T ( / 5 X r ' Y E I G H T  -'tF6.2 V '  (HG 1 ' r 
/ 5 X r  'RANGE s ' r F 6 0 2 r '  ( H C A L / S E C  l ' t  
/ S X t  ' H i A T  R A T E  ='*Fb.Zr'  ( K / W I N I ' .  
/ S X r  ' C H A R T  REC. s ' r F 6 0 Z r '  ( I N C H / S E C l ' r  
/ 5 X r  ' H O L D I Y G  TEMP. = ' r F b . Z r '  (Kb'r 

1 / S X r ' C R A N D  TOTAL H E A T  = ' rFb.Zr '  ( H C A L I ' r  
/ 5 X r ' R A X .  DEC.  OF CURE - 'rF7.59' (100Z)'r 

* /SX. 'HODEEL L I N E  S L O P E  ='rF7.5r 
/ 5 x *  'E XP0NTL.R =' r F 7 . 5 ~  
/ s x r  ' E X P O N T L - N  =' 9F7.5) 

C 
C o o .  READ D A T A  AND P R I N T  ..a 

R E A D  (23 r ) 
W R I T E l 6 r l 0 0 )  N r ~ r X O F F r l B E T A r ( X ( I l r Y ( 1 ) r I ~ X ~ N )  

100 F O R R A T t S X t ' T H E  N U N B E R  OF I N P U T  V A L U E S  - ' t  159 
/ S X v ' T H E  ORDER OF D I V I D E D  D I F F E R E N C E D  m ' t I 5 r  
/ S X r ' X  A X I S  OFF S E T  f ' r F 9 . 5 ~ '  t 1 N C d ) ' q  * / S X r ' R E F .  I N O E X  R O T A T I O A  A N G L E  m'r15r 

* //~~XI'TIRE(INCHI'~~X~'H€AT C E N E R A T I O H ( 1 N C H b ' ~  
/ 1  1 0 X r F 1 3 . 6 ~  3 X r F 1 3 . 6 ) )  

N t  Hr XOF F r  I B E T A r  ( X I ) r Y ( I I r Ill N I 

C 
C o o .  U N I T  T R A N F O R R A T I O N  0 .  

DO SO I = X r N  
X( I l = t X (  I ) * X O F F ) * C H A R / b O .  
Y t 1 ) - Y  t X I * R A N C E / 1 0 .  

50 C O N T I N U E  
B E T A ~ A T A N ( Y I I B E T A l - Y ( l t ~ / ( X (  I B E T A ) - X f l I )  
N R I T E t 6 r I O )  B E T A  

70 F O R H A T ( / S X I ' R O T A T I O N  ANGLE F O R  P R I H E  C O O R D . = @ r E 1 3 o 5 )  
C 
C o o .  COMPUTE A N D  P R I N T  D I V I D  D I F F E R E K C E S  ..e 

N A X l  S i 1  

NK-N 
202 C O N T I N U E  

C A L L  U T A B L E  ( X r Y  * T A B L € r N t R r I F L l C r N K )  
I F ( I F L A C . H E . 0 1  GO TO 101 
W R I T E  4 6 - 2 0 0  I 
N H l -  N-1 
DO 6 I ~ l r N H l  
L- 1 
I F I l . G T . R l  L - R  
W R I T E  16 9 2 0 1  1 ( T A 8 L E  ( 1 9 J) 9 J-1- L I 6 

C 6 C O N T f N U E  
200  F O R H A T ( / / 5 X , '  T H E  OXVXOEO D I F F E R E N C E S  T A B L E  A R E  :') 
201 F O R A A T ( l O X r 3 E 1 3 ~ S I  

C 
C o o .  F I N E R  F U N C T I O N  E V A L U A T I O N I  B A S E  CN C U B I C  I N T E R P O L A T I O N  P O L Y .  

IF tNAX15  .EO. 1 I X F I N E R  ( 1 I = X (  1) 
IF 1NAXIS.EO.  1 ) Y F I N E R ( l I  - Y (  1 J  
IF I N A X  IS. E0.Z 1 X P R I  M t 1 ) m X I  1 1  
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IF ( N A X I S . E O . 2 )  Y P R I R ( ~ J - Y I ~ )  
XI#C'.OS 
J N D - 1  
NN= lN-1 ) /3  
X f  -X (1) 
00 400 I - l r N N  
INO= I *  3-2 
F X O = Y I  I N 0 1  
XO=X ( 1  N D  1 
x i = x (  1 ~ 0 4 1 )  
X Z = X ( I N D + t J  
X 3 - X  ( I N D + 3  J 

X F  -X F +  X I NC 
J N D =  J N D + 1  

X F I N E R t  J N D J - X F  
I F  I N E R (  J N D ) r F X O + T A B L E (  I N D 9 1 J  ( X F - X O J + T A E L E  ( I N O + l r Z  I* 1XF-XO 1 

GO T O  4 0 1  

YP R 1  H I  JND J = F X O +  T A 6 L E  ( I N 0 9  1) ( X F - X O  1 + T A B L E  I I N O +  1.2) I XF -I 0) 

GO T O  4 0 1  

4 0 1  I F ( X f * X I N C . G T . X 3 )  GO T O  400 

I F I h A X I S . E O . 2 )  GO TO 404  

*. *I X F - X 1 )  + T A B L E 1  I N D + 2 9 3 1  I XF-XO 1 I X F - X 1  J * t X F - X Z  J 

4 0 4  X P R I H (  J N D J = X F  

* * ~ X F - X l J + T A 8 L E ~ I N D + 2 r 3 ~ * I X F - X O J * I X F ~ X l J * ~ X f ~ ~ Z l  

4 0 0  C O N T I h U E  
I F ( N A x I 5 . E O . Z J  GO TO 503 
W R I T E  1 6 9 4 0 3  
WK I T E  I 6 9 4 0 2  1 

JNDI( X F I N E R I  I I 9  1119 J N D  J 
( Y F I N E R l I  J 9 1-19  J h O  I 

403 F O R M A T I / 5 X * ' N U M B E R  OF F I N E R  T I R E  G R I D  P O I N T S  -'.I59 
* / / S X v ' F I N E R  T I R E  G R I D  P O I N T S  ( I N  I N T I A L  COORD.J= '9 

/ ( S X  9 5 E l 3 . 5  11 
402 F O R M A T I / / 5 X , ' F I N E R  F U k C T I G N .  V A L U E S  ( I N  I N I T I A L  CODRD. J - '  9 

/ C S X * 5 € 1 3 . 5 ) )  
C 
C o o .  C O O R D I N A T E  T R A F O R H A T I O N  ..e 

X l = x ( l J  
Y l - Y  (1) 
00 500 I - L I N  
X I = X (  1 )  
Y X - Y ( I )  
X I I J - I X I - X l J * C ~ ~ ( B E T A ~ ~ ~ ~ I - ~ l ~ * S I N l B E T A )  
Y ( I 1  =-( X I - X  1) * S  I N (  BETA 1 4  I Y 1-Y 1) *COS 1 BETA) 

500 C O N T I N U E  
N A X I  S-2 
GO T O  2 0 2  
WR I T E  ( 6 9 5 0 1 )  
Y R  ITE ( 69 5 0 2  J 

503 

5 0 1  F O R ~ ~ A T I / S X I ' N U H B E R  OF F I N E R  T I P €  P O I N T S  I N  P R I M E  A X I S  0 ' 9 1 5 9  

J N D 9  t X P R I R t  I J 9 1 - 1 9  J N O J  
1 Y P R I  R (  1) 9 XI1 9 J N D J  

/SX,'FXNER T I R E  G R I D  P O I N T S  ( I N  NEW C O O R D . ) - ' *  
1 ( 5 X . 5 E l 3 . 5  ) )  

502  F O R H A T ( / / ~ X I ' F I N E R  F U N C T I O N  V A L U E S  ( I N  NEW COORO.)- '  9 * / 5 X 1 5 E 1 3 . 5  1)  
C 
C... S I R P S O N  RULE I N T E G R A T I O N  0 - 0  

I T  01- J NO / Z  
I T O T A L =  I TOT *2 
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